import numpy as np
import pandas as pd
from sklearn.impute import SimpleImputer
data = pd.DataFrame(
'age': [20, 25, 30, 35, 40],
'height': [170, 175, 180, 185, 190],
'weight': [60, 65, 70, 75, 80],
'gender': ['male', 'female', 'male', 'female', 'male']
)
data['height'] = data['height'].astype(float)
# Create an imputer object
imputer = SimpleImputer(strategy='mean')
# Fit the imputer on the data
imputer.fit(data[['age', 'height', 'weight']])
# Transform the missing data
data[['age', 'height', 'weight']] = imputer.transform(data[['age', 'height', 'weight']])
```The code snippet you provided is using the `SimpleImputer` class from the `sklearn.impute` module to impute missing values in a pandas DataFrame. The `SimpleImputer` class provides several strategies for imputing missing values, including mean, median, and most_frequent. In the code snippet, the `strategy` parameter is set to `mean`, which means that the missing values will be imputed with the mean of the non-missing values in the same column.
The code first creates a pandas DataFrame with five rows and four columns: `age`, `height`, `weight`, and `gender`. The `height` column is then converted to float data type.
Next, an imputer object is created using the `SimpleImputer` class with the `strategy` parameter set to `mean`. The `fit` method of the imputer is then used to fit the imputer on the data in the columns `age`, `height`, and `weight`. This calculates the mean of the non-missing values in each of these columns.
Finally, the `transform` method of the imputer is used to transform the missing values in the data in the columns `age`, `height`, and `weight`. This replaces the missing values with the mean values that were calculated in the previous step.
The resulting DataFrame is then assigned to the `data` variable.

Image: www.bettingsites24.in

Image: topforexbrokers.reviews
Etoro Option Trading